DUCLAUXIN , A METABOLITE OF PENICILLIUM DUCLAUXI (DELACROIX) S. Shibata, Y. Ogihara, N. Tokutake<sup>4</sup> and O. Tanaka Faculty of Pharmaceutical Sciences, University of Tokyo, Japan

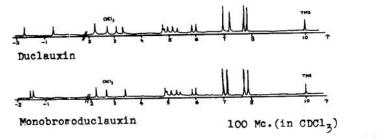
## (Received 16 March 1965)

DUCLAUXIN is one of the metabolites of <u>Penicillium duclauxi</u> (Delacroix) grown on the Czapek-Dox medium. It forms colourless crystals (from benzene or acetone-ethanol), $C_{29}H_{22}O_{11}$ , m.p. 230° (decomp.), [or ]  $_{\rm D}^{30}$  + 272.5° (c= 5.4% in CHCl<sub>3</sub>). It dissolves in conc.H<sub>2</sub>SO, with red colour, and gives a violet ferric reaction.

The UV spectral bands at 233 mµ (log  $\boldsymbol{\epsilon}$  3.95) and 318 mµ(log  $\boldsymbol{\epsilon}$  3.21), and the IR absorptions at 1650-1500 cm<sup>-1</sup> suggested the presence of aromatic structure in the molecule of duclauxin.

The IR absorptions at 1710,1760 and 1690 cm<sup>-1</sup> revealed the presence of lactone, ester and ketone groupings, and the band at 3300 cm<sup>-1</sup> indicated the hydroxyl.

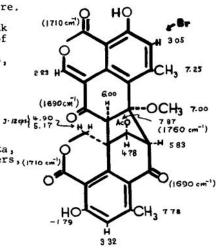
The n.m.r. spectrum of duclauxin showed the presence of  $0COC\underline{H}_3$ (7 7.87), 2 C $\underline{H}_3$  (7 7.78, 7.25),  $0C\underline{H}_3$ (7 7.00),  $0-C-C(\tau 4.90, 5.17)$ (doublets)), 2 tert.H (76.00, 5.83),  $0-C\underline{H} \leq (\tau 4.78)$ , 2 aromatic H (7 3.32, 3.05),  $H-C \leq 0$  (7 2.23), and 2 OH (7 -0.75, -1.79).


On acetylation of duclauxin with acetic anhydride and pyridine, a diacetate,  $C_{29}H_{20}O_9(OCOCH_3)_2$ , m.p. 257°(decomp.) was obtained, and on bromination with dioxane dibromide and pyridine in tetrahydrofurane monobromoduclauxin,  $C_{29}H_{21}O_{11}Br$ , m.p. 260° (decomp.) was afforded. The n.m.r. signals of duclauxin at

\* Present address:Shionogi Research Laboratory,Shionogi & Co.Ltd.

1287

 $\tau$  - 0.75 and -1.79 dissapeared on acetylation, and that of  $\tau$  3.05 (an aromatic proton) was not observed in the monobromo derivative. The position of bromine substitution was indicated by the shift of signals of neighbouring OH ( $\rightarrow$ 7-1.54) and CH<sub>3</sub> ( $\rightarrow$ 77.13) by the bromination of duclauxin.


It is notec that on treatment with ammonia, duclauxin was converted into an orange red crystalline N-containing compound named duclauxamine.



The stereochemical structure of duclauxin has been established by the X-ray analysis of crystals of monobromoduclauxin<sup>1)</sup>, and the IR absorption bands and the n.m.r. signals are assigned as -0.75 being consistent with the structure.

Acknowledgements: We wish to thank Mr.S.Udagawa, National Institute of Hygienic Sciences for supplying mould strain, and Messrs M.Nishio, T.Takekoshi, and H.Maruyama for their co-operations. The n.m.r. spectra were measured by Miss Y. Shibamura, National Institute of Rgdiological Scrences, to whom our thanks are due.

Reference : 1) Y. Ogihara, Y. Iitaka, and S. Shibata: Tetrahedron Letters, (1710 cm<sup>-1</sup>) No.18, 1289 (1965).

